AD-A203 334

¢ FILE COPY
AFOSR-TR. 88-1291
Final Scientific Report

AFOSR Grant No. 83-0071

February 15. 1983 to August 15, 1988

STUDIES IN THE COMPUTATION OF
COMPRESSIBLE AND VISCOUS FLOW

Submitted to:

Air Force Office of Scientific Research
]

Submitted by:

K.-Y. Fung, Associate Professor

Department of Aerospace & Mechanical
Engineering

e L TODTIC _
wvx.&‘o L0 et ras fean reviewed and S -
got o oo rswuse IAW AFR 190-i2.
D & 30" e BT s cownieg,
. ;

MR O KERSTR

Crief, Tecnriicei iniormation Divislon

ENGINEERING EXPERIMENT STATION

~‘,éa.;c?cﬁo/9r'©

8% AIRFA27 0FFIOT 07 SCIENTIFIC RESEARCH (AFSC)
peiim o Sl T
1

ol

DTIC
ELECTE
CEC 1 5 1988

COLLEGE OF ENGINEERING AND MINES

THE UNIVERSITY OF ARIZONA
TUCSON, ARIZONA 8572R & 1




PO

b o | S
e s ___ADA02334
=

REPORT DOCUMENTATION PAGE

4 ta. AEPOAT SECUAITY C'.ASSMIC.A?_&ON l'.' RESTRICTIVE MARK INGS
Unclassified None
2a SECURITY CLASSIBICATION AUTHOAITY (3. DISTRIBUTION/A " u.$m
#/A - A_P@MN‘Q A :.ZQ.QQ. *) p)
= agc-..xasmuwomoomcnamc serEduLE \ . ( Q Q t:Q

o PEAPORMING DAGANIZATION ARPOART NUMBEAWE) | G MONITORING OAGANIZATION ARPOAT NUMBRAIS)

HA AFOSR-TRe 88~ 1291

Lu NAME OF PERAOAMING CAGANIZATION [t QFAICE SYMBDL Ta NAME OF MONITORING OAGANIZATION

(31 spplisndie)

niversity of Arizona AFOSR. /A
6a. ADDAESS (Clry, 3 ons 3P Gode . . Tu. ADDAESS (Ciry, State and ZIP Cosa)
Aerospace and‘“ﬁecham ca'l Engineering . -
Building #16 ' T 'Bb\lws‘ i3 Q’“‘H""‘ﬁ 4“0
ucson, AZ 85721 Woesh., >.C. 033 )
r::m&:\;rgummnsonmc 8. ?‘;:u SYM'COL 9. PROCUREMENT IN_STRUDA.‘NT \DFNTIN:LTI'ON NUM_I(H
AFOSR /A A | AMA AEOSR—<F-007 |
Sa. ADDNESS (Clry, Siase and 21 Cons) ) 1. SOURCE OF BUNDING NOS.
. Bo]]ing Air Force Base - B PROGRAM PROJECT . TASK . WORK UNIT
Division of Air Force Science B1d. 410 CLEMENT NG NG, No. no.
1% .M Seeum Ch-?nq‘Q?MOL
ey Hentians
Studies in the Computation of Comnressible and L (0o | 207 Al
'1:. PRRSONAL AUTHORS)  V1SCOUS T TOW
K.-Y, Fung
13a TYPR OF ARPOAT 13a TiME COVEARED 14. DATE OF REPOAT (Y., Me., Duy) |18, PAGE COUNT [
Final Scientific smom 2/15/83 vo 8/14 88‘ October 13, 1988 l i
16, SUFPLEMENTARY NOTATION
N/A
17. COSATI CD0LS 18 SUBJECT TEAMS (C. J on [ 'y ond identify by bieeh numemry
(A1 ] GROUs SUS. GA.
20,04

iﬂ.AﬂTlAﬂlCanwumllm“hndhbmm

=2 The theme has been adaptive solution refinement. A novel approach called Truncation Error Injection (TEI)
was introduced during the course of research. The idea behind TEl is simple, i.e., the exact nodal value of
the solution to a differential equation could be obtained on any grid and from solving a differsnce equation that
models the differential equation if the uncation error were known. Although the is not known in general,
it can be approximated on a local grid patch. This approach of approximating the local error due to discretiza-
tion in effect decouples a problem of multiple disparate length scales into problems of single length scale so
that they can be solved more efficiently on a computer than the original problem. Three types of appiications
have been demonstrated. In addition to solution refinement by TEI, we have shown that the dscoupiing of the
unsteady computation from the steady one by TEI could significantly reduce the compuring time and storage
for fiutter prediction, and that viscous effects can be computed separately and injestsd into the solugon of an
inviscid solver for viscous flow computation. Some of the advantages of this approach are: it requirss very lit-
tle modification to the base solver; no compatibility problems in using different grids and Giffsrent solvers;

readily suited for muitifprocessors. / . |

. k.\
20, NUSTRIBUTICN/AVAILABILITY OF ABSTRAGCT 21 ABSTRALCT SESUAITY SLASSIBICATION
wwcLastimiso/unumTed B samt as aer. T omicusans O NA U(\QQ{%
232 NAME OF RESPONSISLE INDIVISUAL | =3, TELEPHONE NUMBER a2s. OFRICE SYMBOL
(inginde Ame Cons)
1 (202) 767-4938 AFOSR /a/ A
_DD FORM 1473, 22 APR SDITION OF 1 saN 73 15 CBSOLETE. — UNCLASSIFIED
h( SESURMITY SLASSIB SLTON OF Swig 3. 38

e —————— S e




|
A-l:
This final report summarizes the achievements and activities on the AFOSR Grant
No. 83-0071 from February 15, 1983 to August 15, 1988.

The research under this grant has, to date, resulted in four journal publications and
seven conference papers. One additional paper has been accepted for presentation at the
AJAA 27th Aerospace Sciences Meeting, and another one will be submitted for presen-
tation at the next AIAA Fluid Dynamics or CFD conference. It is anticipated that there
will be two more journal publications for all the work that has been completed. Nine
students have been supported fully or partially on this grant. Two graduated with a
Ph.D., four with an M.S., and the other three continue to work on their dissertation
topics.

L SUMMARY ‘i

The main theme, as originally proposed, has been adaptive solution refinement. A
novel approach called Truncation Error Injection (TEI) was introduced during the course
of research. The idea behind TEI is very simple, i.e., the exact nodal value of the solu-
tion to a differential equation could be obtained on any grid and from solving a
difference equation that models the differential equation if the truncation error were
known. Although the TE is not known in general, it can be approximated on a local grid
patch. This approach of approximating the local error due to discretization in effect
decouples a problem of multiple disparate length scales into problems of single length
scale so that they can be solved more efficiently on a computer than the original prob-
lem. Three types of applications have been demonstrated. In addition to solution
refinement by TEI, we have shown that the decoupling of the unsteady computation
from the steady one by TEI could significantly reduce the computing time and storage
for flutter prediction, and that viscous effects can be computed separately and injected
into the solution of an inviscid solver for viscous flow computation. Some of the advan-
tages of this approach are: it requires very little modification to the base solver; no com-
patibility problems in using different grids and different solvers; readily suited for
multi-processors.

This method has also been applied to study problems related to the dynamic stal-
ling of an airfoil. A key question in dynamic stall is when and where does the boundary
layer separate? Our method enables one to resolve the details of a local flow field such
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as the behavior of the boundary layer at the leading edge of the airfoil. This extension
of our work will be reported in detail for a different AFOSR grant.

I SYNOPSES of JOURNAL PUBLICATIONS

Four journal publications are attached as Appendix I. The first paper, entitled
"Adaptive Refinement with Truncation Error Injection,” outlines the TEI methodology
and demonstrates, with model problems in fluid mechanics, the versatility, efficiency and
accuracy of the methodology. The second paper, entitled "Refined Numerical Solution of
the Transonic Flow Past a Wedge", shows an application of TEI on one of the classical
problems in transonic flows. A solution accurate to 1% of the drag value of the flow
over a wedge has been obtained using TEL. An analysis of this result confirmed for the
first time the existence of a weak oblique shock right after the expansion at the shoulder
in addition to the normal shock downstream. The third paper, entitled "Computation of
Unsteady Transonic Aerodynamics with Truncation Error Injection,” extends the TEI
methodology to decouple the computations of the unsteady aerodynamics due to
unsteady body motion and the steady aerodynamics due to body thickness such that the
unsteady computation can be done more efficiently on a much coarser grid than that
used for the steady flow computation. A factor of sixteen in the saving of computing
time has been demonstrated using examples of oscillating airfoil in the transonic speed
range. The fourth paper, entitled "Computation with Error Injection,” was an invited
paper presented at the Sixth International Conference of Numerical Modelling in Sci-
ence and Technology. This paper reviews the TEI methodology and further generalizes
it to accommodate the use of different equations on different grids.

I PAPERS to be PUBLISHED

A paper entitled "Viscous-Inviscid Interaction and Local Grid Refinement Via
Truncation Error Injection,” has been accepted for presentation at the AIAA 27th
Aecrospace Sciences Meeting of January, 1989 in Reno, Nevada. It will be shown that
accurate prediction of the flow over an airfoil can be obtained by solving the Euler
equation on a relatively coarse global grid with viscous effects computed separately on a




boundary-layer type grid and injected into the global grid solution as a combination of
vorticity and truncation error. In addition to the efficiency and accuracy gained by using
TEI, the solution on the local grid reveals details of the shock structure and a jet-like
flow emanating from the root of the normal shock in the shock boundary layer interac-
tion zone. This result has already shed some light on the possible mechanisms causing
the onset of separation of dynamic stall. It is anticipated that a further extension of the
TEI methodology to equation solvers in body-fixed coordinates and nonstationary grid
will allow us to explore this important area of research. '

Another paper under preparation for presentation and publication is called "An
Efficient Scheme for Three-Dimensional Unsteady Transonic Computations”. Many
techniques, including TEI, have been incorporated into an full potential code in general-
ized coordinates to achieve both accuracy and computational efficiency for flutter pred-
iction for the transonic regime. A full scale application of this scheme on the prediction
of the flutter boundary of an AGARD standard wing will be demonstrated.

These papers will be sent to AFOSR as soon as they have been published.
IV THESIS TITLES and AUTHORS

"Numerical Studies of Shock Wave Resolution By Mesh Refinement', Masters
Report, 1984 -- J. M. Tripp

"Computations of Unsteady Transonic Aerodynamics with Truncation Error Injec-
tion”, Masters Report, 1985 -- J.-K. Fu

"Refined Numerical Solutions of The Transonic Flow Past a Wedge", Ph.D.
Dissertation, 1985 -- S.-M. Liang

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction”, Ph.D.
Dissertation, 1988 -- B. D. Goble

"An Efficient Scheme for Three-Dimensional Unsteady Transonic Computations”,
Masters Report, 1988 -- J. G. Schoen

These reports and dissertations are available upon request.




V  CONFERENCE PRESENTATIONS

"The Effects of Compressibility on Dynamic Stall" (with L. W. Carm),
AIAA/ASME/SIAM/APS 1st National Fluid Dynamics Congress, July 25-28, 1988,
. Cincinnati, Ohio, Vol. II, pp. 799-805, Paper 88-3541-CP.

"An Analytical Study of Compressibility Effects on Dynamic Stall" (with L. W.
Carr), AFOSR/FISRL/DFAN/U. Colorado Workshop II on Unsteady Separated
Flows, July 20-30, 1987.

"Efficient Computations With Error Injection” (with B. D. Goble), Invited Paper,
Proc. Sixth International Conference on Mathematical Modelling, August 4-7,
1987, St. Louis, Missouri.

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction" (with B.
D. Goble), AIAA 25th Aerospace Science Meeting, January 12-15, 1987, Reno,
Nevada, AIAA Paper 87-540.

"Refined Numerical Solutions of the Transonic Flow Past a Wedge" (with S. H.
Liang), Paper No. AIAA-85-1593, presented at AIAA 18th Fluid Dynamics and
Plasma Dynamics and Lasers Conference, Cincinnati, Ohio, July 198S.

"Computation of Unsteady Transonic Aerodynamics With Steady State Fixed by
Truncation Error Injection” (with J.-K. Fu), Paper No. AIAA-85-1644, presented at
AIAA 18th Fluid Dynamics and Plasma Dynamics and Lasers Conference, Cincin-
nati, Ohio, July 198S5.

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction” (with B.
D. Goble), Session Ce: Vortex Motion I, 38th Annual APS Meeting, Tucson,
Arizona, November 198S5.
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COMPUTATION WITH ERROR INJECTION

K.-Y. Fung and Brian D. Goble

University of Arizona, Aerospace and Mechanical Engr. Dept., Bldg. 16, Tucson,

AZ 85721 USA

Abstract. la the context of computational fluid dynamics, the adaptive refinement
technique with truncation error injection due to Fung et al (1984) is extended to
include differences in the governing equations being used on the fine and coarse
grids. This method allows the decoupling of a problem of multiple length scales
into problems of simple length scale which can be more efficiently resolved on
separate grids and using different formulations pertinent to the leagth sciles than
on a single grid. Three variants of this method are exemplified with applications to
problems in computational fluid dynamics. Substantial savings in computer time

and storage are achieved in the examples.

Kevwords, Solution refinement; Truncation error; Multiple grid: Multigrid.

INTRODUCTION

In the following we will introduce a methodology
which allows the decoupling of a complex problem
of distinct length scales into problems of simple
length scale so that they can be solved more
efficiently on a computer. The examples we have
chosen here to apply this methodology to are prob-
lems in computational aerodynamics, since they are
of our prime interest. We hope a review of our
works in the development of this methodology will
make it known to other disciplines and further its
applications.

Computation of flows over aerodynamic bodies has
reached a stage where solutions to most engineering
problems can be found with some degree of accu-
racy. Solvers are available for equation sets ranging
from the Laplace equation for subsonic or super-
sonic flow to the Reynolds-averaged compressible
Navier-Stokes equations for transonic flow. The
choice of equations to be solved to predict some
given flow situation depends on such variables as
degree of accuracy required, computer resources
available, codes available, complexity of geometry,
and complexity of flow situation. Ideally, the most
accurate code available would be used on a grid with
sufficient resolution to capture all of the relevant
physics of the flow field. However, the computer
resources in terms of memory and CPU ume
required to implement the desired code on a suit-
able grid are always limited.

The generation of such a grid is one of the main
stumbling blocks in the solution process. One way
to simplify the grid generation process and to
increase the resolution for a given number of points
is to break up a single global grid into several local
grids that either overlap each other or interact
through a single, coarse, global grid. The local grids
could be generated about individual components of
the geometry or in regions where the characteristic
length scale is much smaliler than that of the global
flow field, such as around the leading or trailing
edge of an airfoil, in the boundary layer or around a
shock. Since the individual grids are only required
to resolve one or two length scales, the task of gen-
erating them is greatly simplified, allowing points to
be clustered where needed without wasting them

elsewhere. Also, since the grids are separate, they
do not have to be solved simultancously, only
requiring information pertaining to one grid to be
resident in memory at a time. Although, in gen-
eral, more points will be used overall, they will be
used more efficiently and will give greater acceracy
for a given amount of computing effort.

It is also possible to use different solvers on the
different grids. Therefore, the solver that is most
appropriate to the purpose of each grid can be

chosen. For example. a full-potential code could be
soived on a coarse global grid while the Euler equa-
tions are solved around a shock to correctly predict
the shock jumps and the Navier-Stokes equations
are solved in the region near the body to resolve
the viscous effects that are important there. I[n this
way, a solver that is only as sophisticated as it needs
to be can be used. This approach is similar to the
singular perturbation techniques in  applied
mathematics.

Of course, using a multiple mesh scheme adds prob-
lemas inherent to the approach. Information must
be passed becween the grids in such a way that the
overall accuracy and stability of the scheme is not
compromised in any way. Also, the bookkeeping
reg_uired to keep track of the solution on several
different grids is more involved and needs to be
automated or it will become burdensome. There is
some memory and CPU time overhead due to stor-
ing bookkeeping information and setting up the grid
interaction algorithms. Another possible problem
area is conservation. Most solvers used today in
transonic applications are in conservative or diver-
gence form. This form is required for the scheme
to conserve such quantities as mass, momentum,
and energy. In regions of the flow field where the
solution is smooth, conservative form is not impor-
tant, but when discontinuities such as shocks appear
in the solution, conservation must be maintained in
order to correctly predict their location. Even if the
solvers themselves are coaservative, if shocks cross
a grid boundary that is not treated conservatively,
the accuracy of the solution could suffer.

The method described here will interact two or
more grids together in the soifution of unsteady,
transonic, viscous flow over an airfoil. The method




will support the use of a different solver for each
grid, which will be interacted through a global

coarse grid using the method proposed by Fung et
al(1984). This approach treats the local grid solu-
tions as mMore accurate approximations to the correct
flow field than the global solution and uses them to
correct the global solution. In this way, the global
solution feels the effect of each local grid and serves
to transmit this data to each of the other local grids.
Section 2 reviews the approach due to Fung et al
and Section 3 extends this approach to account for
differences in operators and formulations. In Sec-
tion 4, we present results from three applications of
the method.

TRUNCATION ERROR AND
GRID REFINEMENT

Most numerical analysis books state that 2
differential operacion L operating oa 2 function ¢ is
related (o a difference operator L, (with the sub-
script A denoting the grid size), oEeming on ¢ by
the truncation error (abbreviated TE hereafter), i.c.,

Lo=L,o+TE(®.h) (D
This result of a2 Taylor series expansion is the basis
for all fnite difference techniques. Ordinarily, the
direct system,

Lydy =0 &3]
is solved for ¢,. As a consistency requirement, the
TE vanishes as the step size A approaches zero.
leading to the limiting solution ¢

.li-n.l_ﬂn =9 3

that satisfies the differential equation
Lo=0. (4)
Hence, it is assumed cthat if che TE is uniformly

small, solving the discrete system Eqa. (2) will lead
to a good approximate solution 0,, of &. However,

in many prohlems the TE is a rapidly varying func-

tion of its arguments. The idea of convenuonal
grid-adapting techniques is to look for or modify the
distribution of grid points according to some preset
criteria which will render uniformity of TE across
the solution domain. Unfortunately, there is no
simple way to generate a grid that minimizes the TE
for a given problem and, in many cases, the process
of finding the optimal grid is more complicated and
time consuming than computing the solution itself.

We must remember that it is Eqn. (4) that one
wants to solve, not Eqn. (2). The discrete equation
that ought to be solved corresponding to solving
Egn. (4) is implied by Eqn. (1), 1.e.,

Lyo, + TE(3,h)= 0 (5

Here, we_have deliberately denoted the argument
function ¢ of the TE with a bar, which can be
different from the solution ¢,. Notice that if the
exact solution were available, it would satisfy Eqn.
(5) exactly, with ¢ = ¢, = &. This implies that the
TE can be computed exactly by applying the opera-
tor L, to the solution, e.8..

TE(¢.h) = = Lo (6
and that solving the system
Lydy = -TE(G.A) = Ly M

Proc. Gh [nt. Conf. on Mathematical Modeiling 1t

will yield the exact solution at nodal points. Hence,
it is clear that if the goal is 0 improve 2 numerical
solution, the basic grid structure need not be
changed, only improved values of TE at grid points
necd to be provided. To emphasize this point, the
base grid in the examples considered here is never
changed. The strategy one would use in making

tradeoffs between the base grid and approximating
the TE is not discussed in this paper.

Analytically, the TE consists of all higher deriva-
tives of the function being expanded in a Taylor
series, if they exist. If more neighboring values of
a function are known, higher derivatives can be
computed, and hence the TE can be better approxi-
mated. A TE sequence may be defined as follows:

TEyw = TE(Opw.h) = = Lidaw (®

where the subscript h/ N refers to values based on a
grid of size h/N (e.é.. subdividing the base grid of
size h, N times). For simplicity, we may assume
9 ,sn satisfies the equation

Lyndyn =0 9

With these definitions and the substitution of Eqn.
(8) into Eqn. (6) and setting ¢ = ¢,y it is casy to
see that 9, = ¢,y is a solution of Eqn. (3) at coin-
ciding nodal points (or through the use of an inter-
polation function).

All we have shown so far is that it is possibie to
obtain a refined numerical solution satisfying Eqn.
(5) without changing the base grid, provided the TE
is known to the same order of accuracy as the solu-
tion. The inclusion of TE into the difference equa-
tion has been suggested before. Lentini and
Pereyra (1974) proposed a deferred correction pro-
cedure to compute the TE progressively. Warming
and Hyett (1974) and Klopfer and McRae (1983)
implemented it in forms of a modified equation.
For some simple linear differential equations, even
analytical expressions of the TE in terms of lower
derivatives of the unknown function have been
used. However, the complexity involved in the
derivation of such terms and, in some, the numeri-
cal instabilities caused by the presence of certain
terms has discouraged the more popular use of such
schemes. Liang and Fung (1985) and Fung et al
(1984) both demonstrated that the above logic
significantly reduced the computation work required
to achieve a refined numerical solution satisfying
Eqn. (5) without significantly increasing the com-
plexity involved.

TRUNCATION ERRCR DUE TO
OPERATOR DIFFERENCES

Now extend the TE(¢.h) term in the above equa-
tions to inciude differences between the coarse grid
operator and the fine grnid operator, ie. the fine
grid equations can be a higher order accuracy ver-
sion of the original equations or even a different
equation set entirely. For example, apply the above
logic to a set of equations where the operator can be
split into different parts, each part representing its
own physics with its own characteristic length scales,

e.g. the Navier-Stokes equations (NSE). Write the
NSE in operator form as

Lo, +Llo, ~Re LYo, =20 (10)
where the tota] operator has been split into the tem-
poral, convective, and viscous operators. Each of
these operators can be associated with different
aspects of the flow field having distinct length
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scales. When these equations are  being solved
numerically, a grid must be used which can capture
all of the relevant length scales. however disparate
they are. Generating such a grid which also
allow the equations to be efficiently solved can be
quite difficult. As mentioned carlier, we can solve
each operstor on 3 grid which resolves. its owm
relevant physics and use TE injection to bring the
separate effects to a global grid. For the sake of
example, say that the physical phenomena associ-
ated with each of the operators in Eqn. (10) have
length scales which decrease from left to right and
that the last operator is only important in some par-
ticular region of the flow field. Then, we can solve
Eqn. (11) on a grid local to that region which has
sufficient resolution to capture the relevant physics.

Lin®in = Re” ll-hleQh'/N =0 (1)

The influence of this solution can then be forced
into the global solution via TE injection by solving

Lina®iie = Line®lin (12)

on the global grid which is only ﬁ)n enough to
resolve the physics relevant to the L' operator, ie.
M < N. If the grids used in solving Eqn. (11) and
Eqn. (12) cover the same domain, then the solu-
tion of Eqn. (12) will represent the fine grid solu-
tion at the coarse grid nodes, while, if the fine grid
is only a subset of the total domain, the solution of
Eqn. (12) will reproduce the fine grid solution at
the coarse grid nodes which lie within the fine grid
region with some influence from the rest of the
domain.

Now, if the temporal effects can be thought of as
perturbations to a steady state, Eqn. (13) can be
solved for the final solution on a grid which is only
as fine as aecessary to resolve the unsteady physics.

Loy + Lioy=LLofin (13)

As explained in Fung et al (1987), the RHS of Eqn.
(13) is an approximation to the TE resuiting from a
Taylot's series expansion of the differentiai equation
that Eqa. (12) is modeling. Eqa. (13), if allowed to
converge to a steady state, will reproduce the fine
grid solution at the coarse grid nodes. For unsteady
calculations, the RHS fixes the steady solution so
that only the unsteady perturbations to this solution
must be resolved.

In this section we have introduced a2 procedure simi-
lar to that suggested by Brandt (1980) for separating
the length scales of a problem so that they can be
solved more efficiently. Following are some exam-
ples which show that the injection of the TE due to
differences in grids and operators is a2 simple but
effective means of improving the accuracy and
efficiency of a numerical solution.

RESULTS

The first problem was chosen to study this pro-
cedure with rotated grids aligned with discontinui-
ties in the flow field. This is a case where the fine
grid operator is merely a different form of the
coarse grid operator. We solved the linear, two-
dimensional convection-diffusion equation for a
nominal quantity T, modeling two adjacent fluids of
initiaily different temperatures moving at the same
speed. Upwind differencing was used for the con-
vective terms. It is well known that the artificial
cross-wind diffusion due to upwind differencing is a
major source of error. [t causes excessive spreading
of the discontinuity. Fig. 1 shows the temperature
coatours solved on a2 60x40 base grid of step size h

Yi.8

8.3 73 T3 TTTT .0

FIG. 1. Numerical Solution of a temperature
diffusion layer (60x40 grid), no TE injection.

= 0.25. Solving the equations on a 120x80 grid
only slightly improved the solution and neither case
compared well with the exact solution. Given juit-
able pattern recognition schemes, it would be
natural to introduce a rotated grid parallel to the
flow direction over a small region surrounding the
discontinuity with boundary conditions extracted
from the original solution. Here, we have done this
manually with a 20x40 grid aligned with the flow.
Due to grid rotation, the cross-wind artificial
diffusion is minimized, resulting in a sharp tempera-
ture gradient very close to the exact solution. The
isotherms that appear near the upper and lower
boundary of the refined local solution on the
subgrid (Fig. 2) are an effect of the incorrect boun-
dary conditions extracted from the base grid solu-
tion; these can be avoided simply by taking a larger
subgrid. However, with the ingcted TE, the
improved base solution grovides a sharp gradient
without such isotherms (Fig. 3), which shows that
the base grid solution is readjusted smoothly
through the artificial boundaries.

FIG. 2. Locally refined solution on
a rotated 20x40 grid.

The second example is the use of TE injection to
maintain the inviscid steady flow corresponding to

R
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FIG. 3. Improved solution of a temperature
diffusion layer with TE injection, 60x40 grid.

body shape while the perturbed unsteady flow
corresponding to unsteady body motions are being
computed. In unsteady transonic flow, for low to
moderste reduced frequencies, the typical wave
length of an acoustic signal is of the order of the
chord of the wing. Hence, a grid with a minimum
spacing of a teath of the chord should be
suffciently fine to resolve these waves. However,
in a typical inviscid flow, the smallest characteristic
length scale is on the order of the radius of curva-
ture of the leading edge of the airfoil. Therefore, 2
grid with a minimum spacing of a hundredth of a
chord is needed to resolve the flow field. Due to
linear or nonlinear numerical instability, these grids
may require too smail a time step for efficient com-
putations of the unsteady acoustic waves caused by
the small unsteady wing motions and deformation
assumed in flutter analysis. In order to ecase the
restrictions on the time step, Fung and Fu(1989)
used the technique described above to compute the
steady and unsteady flows on different grids.

They assumed inviscid flow so Re—e and only
Eqns. (12) and (13) above are relevant. Eqn. (12)
is solved on a grid which is fine enough to resoive
ail the relevant physics in the steady flow field.
Eqn. (13) is solved on a grid which is only as fine as
required to resolve the acoustic signals as described
sbove. Results are preseated for supercritical flow
over an NLR 7301 airfoil. The airfoil is gilching
harmonically at a reduced frequency k = 0.1 in a
freestream with Mach number of 0.7. The calcula-
tions were ormed on a fine grid 109x87, a
coarse grid 54x43, and on the coarse grid with TE
injection from the fine grid. Fig. 4 compares the
uasteady pressure distributions at 90 degree inter-
vals. From these comparisons, it is evident that,
ex for minor differences near the shock, the
results obtained on the coarse grid with TE injection
are fust as accurate as those on the fine grid. The
fine grid solution required 900 seconds of CPU
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FIG. 4. Comparison of the unsteady pressure
distributions of an NLR 730t aurfoil.

time, the coarse grid solution 57 seconds. and the
coarse grid solution with TE injection 60 seconds.
A reduction in computation time by a factor of four
is attributed to the reduction in grid points and
another factor of four to the relaxation of the allow-
able time step imposed by numerical stability.

This technique has also been applied by Schoen
(1987) to three dimensional flow in 2 code
developed at Nasa-Ames for Transonic UNsteady
Aerodynamics - TUNA, due to Bridgeman and
Steger (1982). Results are presented for supercriti-
cal flow over a rectangular wing with NACA-Q012
cross-section and an aspect ratio of 6. Fig. 5 shows
the deviation of the pressure coefficient from the
fine grid ste=dy state at the airfoil midspan for the
fine grid solution and the coarse grid solution with
TE injection. Note that the scales used in Fig. § do
not permit us to show the large deviations found in
the coarse grid solution without TE injection. The
wing is plunging harmonically at a reduced fre-
quency of 0.4 in a freestream with Mach number
0.7. The calculations were performed on a fine grid
89x49x18, on a coarse grid 45x25x18, and on the
coarse grid with TE injected. The grids were not
coarsened in the spanwise direction as the typical
spacing in this dimension is too large on even the
fine grid for resolving acoustic waves. The method
captures the steady-state solution exactly. Various
phases from the first cycle are shown to verify that
the unsteady dure maintains respectable accu-
racy as well. With 100 steps per cycle, the fine grid
solution took 68 Cray seconds per cycle and the
coarse grid with or without TE took 19 seconds per
cycle. Because the time marching scheme in chis
code is unconditionally stable, there were no time
step restrictions to be relaxed on the coarse grid.
Thus, a reduction in computation time by a factor
of about four is attributed to the reduction in grid
points.

The third example shows the use of TE injection to
fix the viscous effects in a steady flow field while
using a less dense grid to calculate the inviscid
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deviations from the fine grid steady state
solution for an ONERA-MS6 airfoil.

aspects of the flow. As mentioned above, a grid
with 3 minimum spacing of a hundredth of a chord
should be sufficient 1o resolve the inviscid flow
field. However, in a viscous calculation, the impor-
tant length scale is thag of the boundary layer thick-
ness which is O(1/VRe), and in a turbuient flow
there is a sublayer whose length scale is even
smaller. For accuracy, a grid must be used which
will resoive these small scales and yet must still
retain enough points away from the body to resolve
the far field. These requirements, coupled with
smoothness limitations, result in a highly clustered
grid with a large number of nodes which tends to
slow convergence of viscous calculations. In order
to resolve the two regions of flow with their distinct
length scales more efficiently, we have applied the
above method to allow the viscous and inviscid cal-
culations to be computed on separate grids.

The method is implemented using the thin-layer
Navier-Stokes/ Edler code ARC2D due to Steger
(1978) and extended by Puiliam and Chaussee
(1981,1984). The code was applied to a laminar,
compressible boundary layer on a flat plate at zero
anlgle_ of attack; see White (1974) for details of this
solution.

A laminar, viscous solution was found oa 2 §1x61
base grid, corresponding to the solution of Egn.
(11), in the full domain using ARC2D and desig-
nated the fine grid solution. At first, in Eqn. (12),
the forcing terms were formed using the same grid
as the coarse grid. The forced calculation was then
performed with free stream initial conditions. As
expected, the forced calculation returned the origi-
nal solution.

Eight more grids were formed from the base grid by
keeping every other or every fourth coordinate line
in either direction. The fine grid solution was res-
tricted to each of the eight coarser grids. These
eight grids are subsets of the fine grid so the restric-
tion process is merely an injection of the fine grid
solution 2t common grid points. In each case, the
forcing function was formed and a forced calcula-
tion performed using free stream initial conditions.
Only the results from the finest and coarsest grids
will be shown here.

FIG. 6. Fine (61x61) and coarse (16x16) grids
used for calculation of boundary layer flow.

Fig. 6 shows the two grids used. Fig. 7 compares
the results found on the 16x16 grid using the Euler
equations plus forcing terms (INVIS]) with the fine
grid results using thin-layer Navier-Stokes (VIS4).
As the plot shows, the horizontal momentum is
resolved very well by the coarse grid when forcing
terms are used. Fig. 7 also compares INVISJ with
thin-layer Navier-Stokes results on the 16x16 grid
without forcing(VISD). It is obvious that INVIS] is
a far better solution than VISD.

CONCLUDING REMARKS

The technique of truncation error injection intro-
duced by Fung et al (1987) has been successfully
generalized to include operator differences in the
truncation error term. This generalization has
enabled the use of multiple grids to resolve widely
disparate length scales, significantly increasing the
efficiency of the solution process while retaining
accuracy. The different grids are each required to
tresolve only one aspect of the fow field, making
them much easier to generate and more efficient in
their use of points.
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Introduction

HE urgent need for effective, reliable methods for

unsteady aerodynamic predictions at transonic Mach
numbers is evident from the Farmer and Hanson' experiment
in which it was observed that the flutter boundary for a wing
with a supercritical cross section is substantially lower than
that with a conventional one. At transonic speeds, the size and
location of the embedded supersonic zone over the wing affect
the way acoustic signals propagate and. hence, the aerody-
namic responses to disturbances. Recent developments in
computational fluid dynamics and the availability of super.
computers have made accurate flow prediction possible.
However, for applications like routine flutter caiculation and
aircraft design optimization, the currently available codes,
especially the ones for three-dimensional computations like
XTRANIS of Rizzetta and Borland? and USTF3 of {sogai and
Suetsugu,’® are still much too time consuming.

As mentioned in Fung,* one of the problems in unsteady
transonic flow computation is the grid for obtaining the solu-
tion. Aside from the issue of finding the best grid for a given
wing geometry, a grid must have a local mesh size comparable
to the radius of curvature of the leading edge in order to prop-
erly resolve the fast expansion that determines the size of the
sonic bubble and the strength and location of the shock. The
computational domain must be large enough to allow the flow
to relax to the freestream condition with little confinement
from grid boundaries. Almost all grids currently used for
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aerodynamic computations are based on these considerations.
However, these grids, while suitable for computing steady
flows, may require (due to linear or nonlinear numerical in-
stability) too small a time-step limitation for efficient com-
putations of the unsteady acoustic waves due to the smail
unsteady wing motions and deformations assumed in flucter
analysis. For low-to-moderate reduced frequencies, the typical
wavelength of an acoustic signal in a transonic flow is of the
order of the chord of the wing. Hence, a grid with a minimum
spacing of a tenth of the chord should be sufficient. However,
an accurate prediction of the steady flowfield over a wing at
supercritical Mach number often requires a minimum spacing
of & hundredth of the chord and, hence, a ume-step require-
ment based on the CFL condition {0 times as restricted as that
needed for accuracy.

In this Note, a technique is introduced that allows the steady
and unsteady flows to be computed on different grids. To
demonstrate the efficiency of this technique, the unsteady
small-disturbance transonic equation is used for unsteady
aerodynamic prediction. The results of applying this technique
are compared to those obtained on single grids.

Computations with Truncation Error Injection

it has been shown’® that, by solving the corresponding dif-
ference equation with the truncation error included as a forc-
ing term, exact nodal values of the solution to a differential
equation can be obtained; that if the exact solution were
known, the exact truncation error can be computed at nodal
points; and chat the truncation error can be approximated by
local grid refinement.

Consider a difference equation of the form

L,‘.*L.‘u-o (l)

where L, and L, correspond to the temporal and spatial
discrete operators, respectively, and ¢, the numerical solution
on a grid of size A. Assuming that ¢f is the steady-state solu-
tion of Eq. (1) satisfying

L,o)=0 2)
it is quite obvious that ¢, also satisfies
Lr°h + Ln¢. = L.02 (3)
and that solving Eq. (3) for ¢, is the same as solving Eq. (1).
However, Eq. (3) is more general in the sense that, if it con-
verges, it will yield the steady state o3 regardiess of whether #%
satisfies Eq. (2). For example, we could replace o3 by ¢J,x.
i.e.,

L,6~ + Ln‘n - L»°2/~ 4
= Fing Gng 109 X 87
-20 4 Coorse Gnd 34 x 43

o Course Gnd wih
Truncntion Error ingction

-3 ]

'9%% o7 0+ os o8 o
xsc

Fig. 1 Comparisen of the surface pressure distributions of aa NLR
7301 sirfoll st M, = 0.70 obiained by different methods on differemt
grids.
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Fig.2 Comparison of the unsteady pressure distributions (four inter-
vals of a cycle) of am NLR 7308 sirfoil pitching harmonicalty at
M_=0.70 and ¢ reduced (requency A =0.1 obtsined by different
methods on different grids.

Tsble ! Comparison of computation time for different

computations, CPU"s
NLR 7301
Case Steady Unsceady Total Steady Unsteady Total
Fine grid 13.2 299.1 3123 329 899.5 9324
Coarse grid 5. 14.5 200 104 56.5 66.9

Coarse + TEl 17.0 16.3 333 .3 $9.3 96.0

Here, &3,y denotes the steady-state solution on a finer grid of
size h/N, satisfying the difference equation

Lynol y=0 &)

As explained in Fung et al.,* the term £, 92, in Eq. (4)is an
approximation to the truncation error resulting from a
Taylor’s series expansion of the differential equation that Eq.
(1) is modeling. The difference between Eqgs. (3) and (4) is that
the latter contains an approximation of the truncation error of
the steady solution due to discretization and hence will yield
the more accurate ¢f,, as a steady solution if, of course, the
unsteady effects are allowed to diminish. Assuming that the
base grid of size 4 is fine enough for resolving the unsteady
part of &,, there will be very little or no truncation error due
to discretization and Eq. (4) should yield more accurate solu-
tions that Eq. (1).

In the case where the spatial operator L, is linear, Eq. (4) is
simply Eq (1) with the term L,4%,, added to both sides of it.
For nonlinear operators, Eq. (4) will enforce the perturbations
about a steady state to satisly the governing equation. It is of
interest to note that the splitting of an operator into a steady
and an unsteady operator as in Eq. (1) is necessary only for the
clarity of the discussion.

= Fing Grid 109 X Q7
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Fig. 3 Resl and imaginary perts of (he unsteady pressure disiribution
of sm NLR 7301 sirfoll pitching harmonicaily st M, =0.70 and at
reduced frequency & = 0.1 obisined by different methods on different

Numerical Example

To demonstrate its effectiveness, we have implemented this
technique into the code AZTRAN? for solving the unsteady
transonic small-disturbance equation. No modification to the
code is needed except adding the stored truncation error values
computed from the steady-state solution to the matrix equa-
tions at each time step. Figure | shows different steady-state
pressure distributions for an NLR 7301 airfoil at a freestream
Mach number M, =0.70 obtained on a fine grid (109 x 87)
and on a coarse grid (54 x 43) that was formed by omitting
every other grid line of the fine grid. As a result of faster ex-
pansion at the leading edge, the pressure distribution (solid
line) obtained on the finer grid shows a stronger shock located
further downstream compared to that (triangles) obtained on
the coarser grid. The pressure distribution shown by the
squares was obtained on the coarse grid with injected trunca-
tion error computed from the fine-grid solution. It coincides
with the solid line aimost everywhere except near the shock,
where 2 smearing of the pressure jump occurs mainly because
of numerical differentiation and graphic interpolation. The
numerical smearing of the shock within one grid point,
however, is of secondary importance as far as the computation
of integrated loads for an aeroelastic application is concerned.
Theoretically, unsteady perturbations on a shock create a
singularity, an integrable one, however, in the perturbed
quantities at the mean shock position. In reality, this singular-
ity is often smeared by viscous effects. Motions of the shock, a
noniinear phenomenon in nature, also cause higher harmonics
in the acrodynamic forces. However, it was shown by Davis
and Maicolm® that the higher harmonics have little effect on
the integrated loads.

Corresponding unsteady pressure distributions at 90-deg in-
tervals for the same airfoil pitching harmonicaily at a reduced
frequency k= 0.1 are shown in Fig. 2 and their first harmonic
decompositions in Fig. 3. It is evident from these comparisons
that, except for the minor differences near the shock, the
results, including the motions of the shock, obtained on the
coarse grid with truncation error injection are just as accurate
as those on the fine grid. The CPU time, as listed in Table 1,
for obtaining five cycles of harmonic motion on the fine grid
was 900 s, for the coarse grid solution it was §7 s, and for the
coarse grid solution with the truncation error injection it was
60 s. A reduction in computation time by a factor of four is at-
tributed to the reduction in grid points and another factor of
four to the relaxation of the allowable time step imposed by
numerical stability.

Similar results for a conventional airfoil, NACA-64A.010,
at a freestream Mach number of 0.796 and a reduced fre-
quency of 0.1 are also listed in Table 1. Because of the conven-
tional leading-edge shape, the pressure expansion at the
leading edge is quite mild compared to that of the NLR 7301,
Hence, the results obtained on both grids were just as ac-
curate, except near the shock, with or without the truncation

1200t e el



1020 AIAA JOURNAL VOL.25,NO. 7

error injection. This verifies an assumption in our theory that
a relacively coarse grid is sufficient for resolving the unsteady
acoustic waves if the steady pressure is accurate.

Conclusion

A simple numerical technique which can be easily im-
plemented in any numerical code for computations of two- or
three-dimensional unsteady transonic aerodynamics has been
inttoduced. This technique allows the decoupling of a solution
having two distinct length scales into two parts. By solving
each part on a grid of the proper length scale, substantial sav-
ings in computation time and storage can be achieved.
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Refined Numerical Solution
of the Transonic Flow Past a Wedge

S-M. Liang*® and K-Y. Fungt
University of Arizona, Tucson, Arizona

A aumerical procedure combiaing the idess of solving & modified difference equation aad of adaptive mesh
refinement is introduced. The numerical solution on a fined grid is improved by using better approximstions of
the truncation ervor computed from local subdomain grid refinements. This techaique is used 10 obtain refined
solutions of stesdy, inviscid, (ransonic fMlow past s wedge. The effects of truncation error on the pressure
distributien, wave drag, sosic line, and shock position are investigated. By comparing the pressure drag to the
shocks, a supersonic-10-supersonic shock originating from the wedge shoulder is conflrmed.

Introduction

HE problem of interest is flow at subsonic freestream
Mach number M, past a wedge (see Fig. 1). After a
compression at the leading edge, the (low expands and
reaches the sonic condition at the shoulder. Downstream of
the shoulder, the flow must return to the subsonic freestream
condition through a shock, or shocks. Because of its
simplicity, this model was used by Cole' and Yoshihara? to
study the characteristics of transonic flow and the validity of
the transonic small-disturbance equation. However, because
of the inherent limitations of the hodograph method used in
their studies, certain assumptions regarding the flow pattern
were made in order to have a complete specification of the
probiem in the hodograph plane. Cole assumed that the
sonic line is locaily vertical and contended that the Prandtl-
Meyer expansion at the wedge shoulder be terminated by an
oblique shock, whereas Yoshihara assumed that a smooth
overexpansion occurs at the shoulder and the supersonic
zone is terminated by a nocrmal shock downscream of the
shoulder. The flow was studied experimentally by Liepmann
and Bryson,’ whose results were inconclusive about the
oblique shock at the shoulder due to viscous effects, and
numerically by Yu and Seebass,* whose solution was inac-
curate due to the numerical scheme used and insufficient
resolution at the shoulder. To date, no accurate solution
describing the correct flow structure has been reported.
Realizing that the flow structure is a result of the expan-
sion at the shoulder where small variations in flow variables
may affect the overall flow structure, we apply a subgrid
refinement procedure (suggested by Fung et al.®), which
allows local, as well as global, improvement to obtain a
refined solution on a fixed grid without changing the base
grid structure, as is needed in other grid refinement pro-
cedures. In this procedure, a solution is defined on a fixed
grid and is improved through approximation of the trunca-
tion error, which is usually ignored in a conventional finite-
difference approximation. It is demonstrated in this study
that local refinement yields resuits as accurate as those ob-
tained on a uniformly refined grid, that the truncation error
is an effective means for measuring error in the solution of a
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difference equation and for improving a numerical solution
on a fixed grid, and that the procedure suggested by Fung et
al.’ achieves substantial savings in computer time and
storage with minimal bookkeeping effort.

A sequence of improved solutions obtained using this
method indicates the existence of both an oblique shock near
the shoulder and a normal shock downstream of it.

Governing Equation and Numerical Scheme

The governing equation for this flow is the transonic,
small-disturbance potential equation:

(Ko, = (¢7/2)],+0,, =0 )

Here, the perturbed velocity potential ¢ and the space coor-
dinates x and y have been scaled properly. X, the transonic
similarity parameter, is a result of the scaling, which involves
the freestream Mach number, the wedge half thickness 6,
and the ratio of specific heats y. The boundary condition on
the body is the tangency condition,

S,(x,0)=0, x>I
={, Osxsxl
and the far-field boundary conditions are
¢,=20,%0 as X +yl=oo

For computational efficiency, this condition may be replaced
by an analytical expression for ¢ corresponding to a source
singularity at point (2, 0).

Equation (1) admits weak solutions that satisfy the shock
jump condition

(K=o, (0,12 +[0,]2=0 (i)

where the tilde denotes an average quantity across the shock
and the brackets denote the jump in the argument.

A balance of x momentum requires that the pressure drag
on the wedge be related to the shock jumps, i.e.,

! 1
= - [ R p—. 3
5 , C,9, (x.0)dx jo 26,dx 3 g‘ " (o, )°dy (3

This equation is used later for evaluating the accuracy of the
results.

Equation (1) is discretized using the monotone scheme sug-
gested by Engquist and Osher,® and the resultant difference
equations are solved by a line relaxation method.
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Truncation Error and Grid Refinement
The difference between a differential equation £o =0 and
the difference equation that models it is the truncation error
(denoted as TE hereafter), i.e.,

Lo=L,o+TE(SA)

Here, £ is the differential operator; 9, the solution: and L,,
the difference operator resulting from retention of ap-
propriate leading terms in a Taylor’s series expansion on a
grid of typical spacing h. .

Ordinarily, the discrete system, L,o, =0, is solved for an
approximate ¢, and the TE is assumed to be small. Unfor-
tunately, unless the local grid size is comparable to, or
smaller than, the local length scale of the solution, the local
TE will be large, causing an error in &,. Attempts and
limited successes have been reported on various adaptive grid
distribution procedures (c.g., Pearson’ and Babuskal),
which tend to minimize the local TE. However, these
methods very often depend on the criteria used and are sen-
sitive to the control parameters introduced in the procedure
for rclating the grid sizes to the measures of error. In Ref. §,
Fung et al. explained that it should be possibie to obtain at
the node points of a grid the values of the exact solution to a
differential equation if the TE were known. This means that
if the goal is t0 improve the numerical solution, the basic
grid structure does not have to be changed—only improved
values of the TE need to be provided.

It can be shown that if the exact solution ¢ were known,
the TE can be computed exactly by applying the operator L,
to ¢, e.3..

TE(0.h)= ~L,0

Hence, if 0, . is the refined solution on the grid of size /N
(i.e., subdividing the base grid of size A, N times), the
operation

~L,0, «mTE, ,aTE(¢.h)

would yield better approximations of the TE as the refine-
ment factor N increases. Of course, this is true only if the
scheme is consistent with the differential equation being ap-
proximated; i.e., the truncation error on the finest subgrid
diminishes while the truncation error on the base grid ap-
proaches the asymptote.

To effect an improved solution on a fixed grid by TE in-
clusion, we use the procedure suggested by Fung et al.' To
begin, we choose a base grid, which will not change through-
out the procedure. The TE is set to zero, and the discrete
equation

Lh¢’, + TE =0 (4)
is solved for the first approximation of. Regarding &} as a
refined solution for a grid of size 2h, an estimate of the TE
is then formed by computing
Lo}

The regions where the estimated TE, ~ L.,¢%. is larger than
a preset value 7 are identified; if the base grid was properly

Sonic Line

o

3

Fig. 1 Flow over & wedge 2t 2 transonic Mach number,
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chosen, these regions should be a smail part of the base
region. With boundary conditions interpolated from the base
solution, refined solutions satisfying

Londan=0

are then obained and used to form the approximated TE,
=L,04,~. Outside the region where refinement is needed,
the TE is assumed to remain zero. The process is repeated
with the newly obtained TE,, . until

ILyo} d = La0% o) <6 forall M>N

This procedure is shown schematically in Fig. 2.

it was shown by Fung et al.’ how, for various cases, this
procedure can lead to improvement of numerical solution on
a fixed grid, including the sharpness of ‘shocks. A similar
procedure has been suggested by Brandt.® Me pointed out
that nesting subgrids can be coupled with the multigrid pro-
cedure, which has been widely used for accelerating the con-
vergence of numerical schemes.

Results and Discussion

The base grid for all of the numerical results is a uniform
grid of spacing Ah=0.1 over a computational domain of size
6 x 6 wedge chords. Figure 3 shows the distribution of the
estimated TE, L,,0}, computed after obtaining the initial
base solution ). The values shown have been multiplied by
a factor of 10. Subregic 3 outside of which the maximum
TE is less than the prese: 7 are shown in Fig. 4. No attempts
were made to tailor these regions to the minimal sizes. The
case of r=0 means that the whole domain is refined. For the
case of r=3.0, two regions were identified; one is about the
leading edge and the other about the shoulder, as expected.
Local solutions over these regions were then obtained with
interpolated boundary conditions from ¢ (for details, see
Ref. 10). From the local refined solution, the approximated
truncation error is then computed and used to obtain the
next refined solution, ¢}, on the base grid satisfying Eq. (4).

Lty +TE= O

!

LOENTIFY
SUBGRIDS BY
ooyl > <
Lnindnsn = 0
ON SUBGRIDS

!

TE = -Loopn

YES

‘ sTop >

Fig. 2 Schematic of sdaptive grid refinement with truncation error
injection.
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Table 1| Comparison of drag values for differemt vaiues of 7 after the first refinement cycle
Relative
Refinement Preset Pressure _Wav, CPU on error of
cycle, k tolerance, drag  Oblique Normal Total CRAY X-MP, s wave drag, %
0 - 0.750 0.300 0.538 0.838 33 12
1 0.00 0.72 0.201 0.610 0.811 629 b)
1 0.05 0.713 0.202 0.608 0.810 66 5
1 0.50 0.7170 0.179 0.627 0.806 53 s
1 3.00 0.784 0.244 0.573 0.819 50 s
Table 2 Comparison of the drag vaines after different cycles of refinement, r=0.05
Relative
Refinement Grid refinement Pressure W3av CPU on error of
cycle, k factor, .V drag  Oblique Normal Total CRAY X-MP,s wave drag, %
0 ] 0.7%0 0.300 0.538 0.838 33 12
i 2 0.713 0.202 0.608 0.810 66 s
2 2 0.773 0.202 0.608 0.810 78 b
2 4 0.793 0.129 0.672 0.801 25§ I
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[ ] [} ¢ 0 [} [ [] k] () [ ] L] L] [ [ ] (] [] 1 ] ¢ 8.
[ ] L O ] [ (] [} [} ¢ [] [] [} [] [} ] [} ° [] ] [] [ D
9. 0. ¢ o 0 o o o 6 0 6 0 o0 95 8 0 L 2 0 0 ¢
[ ] e o 9 1] [} ] [} ] (] L} L] [} [} . t. L. - 0 (] e
Fig. 3 Distribution of the estimated truncation o. 0. 0 0. 0. 0 ¢ 0o 0 ¢ ¢ 0 ¢ ¢ o L 1 ‘1. ¢ 6 0
error, Ly, 0, (values have been multiplied by 10). 0. 0. 0 6. 8.0 0 0 & 0 0 8 6 0 L 2.1 -1 -1 0 0
PO TN T TR TUN S TUNY JNNT TN TN DN SO JUNY NN N FE S N R P X
PO T T T T N TR T TR PO T T U SN BN SHNEC GUYS S B SO B
PV T N T T T T T T THRNY VRN TN VAN TN PR JONE NN SN Y JE N
] ¢ 0 (] ¢ 0 . 9 [} (] [ L I ] §. 1. <5 ¢ A 6. 0 ¢.
PR VU TR VRN T T TR TR VU TN AN RN BN MY O RN DR PR N D N
¢ 0 0 1. 1 L -p 0 0. 0 -5 13 7 0. - ) 1 % 2 0 0
. & 8 1 &t <10 0 1t 7 W Wm0 11 7T e 0
0. 0 s -3 44 B 19 2 1 1 ‘T = TN TR GO JUNE GRNN W SRSt U YO N
|
LEADING EOGE SHOULDER
2 N 0 1 2 1 « I3 to Eq. ()] obtained for different values of r which corres-
U A s pond to different regions of refinement. It is quite clear
from this comparison that a subregion of r =(0.05 is adequate
s for accurate calculations. The difference between the wave
1, s and the pressure drag diminishes after one cycle of refine-
4 g ment from 12 10 5%, at a cost of only twice the computation
time needed for the base solution. This is a substantial sav-
ings relative to a uniformly refined solution, which costs 20
3 . e0.08 ’ times as much as the base grid solution #2. It is shown that
further savings in computation time are possible with minor
losses in accuracy. Another cycle of refinement, keeping the
2 r refinement factor the same (V= 2) but using boundary con-
ditions from the base solution for the local refined solution,
O oy coos \ showed that the effects due to the newly updated boundary
I.__ —~ / conditions on the base solution were minor compared to
M ity / 3 those of increasing V. The difference in the drag values is
0 ",A /. . reduced to less than 1% after two cycles of refinement,
.2 -1 0 ' ] 1 . s k=2, and for a refinement factor N=4, but to only 5% if

Fig. 4 Computationsl domain snd subregions for variows grid
refinements.

Figure § compares the base solutions before and after the
first cycle of refinement with that obtained on a uniformly
refined grid size of A/2. It shows that this refinement pro-
cedure is accurate and efficient. The effects of the refine-
ment with TE injection on the sonic line and on the shock
are shown in Fig. 6. Because of the improvement at the
shoulder, the normal shock moves downstream and becomes
stronger. Table | compares values of the pressure drag on
the shoulder and the wave drag due to the shocks [according

N=2 (Table 2). For two cycles with N =4, the computation
time was 255 s, approximately four times that for one cycle
because the rotal number of grid points was increased by the
same factor; a better strategy would be to apply the adaptive
refinement procedure to the local solution coupled with a
pattern recognition routine to determine the subgrid
geometry, as demonstrated by Berger and Oliger,'’ instead
of the uniform refinement. The base solution obtained after
two cycles of refinement was accurate within 1% in the drag
values, the same order of magnitude as the maximum
residual of the difference equation. Further refinements are
not needed unless the residual tolerance is set to a smaller
value in solving the difference equations.
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{n evaluating the shock drag, one notices chat the drag due
to the normal shock is about four-fifths of the pressure drag
on the shoulder. To detect the momentum loss, we moved a
control volume along a grid line parallel to the x axis and
computed the losses at different x stations. These values are
plotted in Fig. 7. The coordinates of the midpoint between a
maximum and a minimum are shown by the crosses in Fig.
8, indicating the location of an oblique shock at an angle of
about 41 deg with the x axis due to the compression im-
mediately after the Prandtl-Meyer expansion.

A close look at the velocity field in Fig. 9 reveals the
qualitative structure of the flow at the shoulder, which is of
prime interest. By measuring the flow angle, it is found that
the flow overexpands as much as —-3.1 deg at a point 0.3
chord above and 0.6 chord downstream from the shouider.
A local analysis'* shows that the flow expands to a max-
imum velocity

u(1*,0)=K+(3/2)¥ = 1.810

right after the shoulder and compresses along the wall at the
rate

u=(3/27(1-2-33x¥)+ K

which is quite close to the numerical prediction. Because of
the compression, the characteristics coalesce into a weak
shock wave starting with a slope of (2/3)!} =41 deg, a zero
curvature, and a negative third derivative. The maximum
velocity, linearly extrapolated from downsiream 10 the
shoulder, assumes the value 1.878 on the base grid and the
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values 1.864 and 1.819 after the first and second cycles of
refinement, respectively, approaching the theoretical value as
the solution on the base grid is improved. It is this oblique
shock that accounts for the balance of momentum.

Conclusions

An efficient refinement procedure combining the ideas of
solving a modified difference equation and of adaptive mesh
refinement has been developed for refined computations of
steady, inviscid, transonic flows. The advantage of this pro-
cedure is that it allows local, as well as giobal, improvement
on a base solution without changing the base grid structure
and with only modest increases in storage and computation
time.

In the computation of the flow over a wedge at K=0.5,
the existence of an oblique shock near the shoulder is con-
firmed by comparing the pressure drag and the wave drag.

Although the present method is applied to obtain solutions
of the small-disturbance equation for a particular profile, it
can be extended, in principle, to other complicated flow
problems.
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In the context of finite difference approximation, the difference between a differential equation and
the discrete (difference) equation that models it is the truncation error, and it can be easily shown that
if the truncation error were known. soiving the discrete equation would yield the exact solution at
nodal points. An adaptive procedure for improving the accuracy of a numerical solution on a fixed gnid.
which we call the base, through the approximation of the truncation error by subdomain gnd
refinements is introduced. Regions where refinements are needed are identified using an estimate of
the truncation error. Local solutions on grids tailored to each of the regions are constructed and used
to form approximations to the truncation error, which is then “injected’ into the base grid to improve
the base solution. A one-dimensional model of the convection-diffusion equation is used to demon-
strate the basic ideas behind this method; two other examples which imply extensions of this method to
multidimensional problems are also studied.

1. Introduction

Since the advent of the computer, scientists and engineers have been using discrete
approximations to obtain solutions to differential equations of various complexities. Most
problems can be solved using a computer, given enough storage and computation time. In
practice, the class of problems that can be solved is directly limited by the available memory
capacity and speed and, indirectly, by the efficiency of the method used to calculate the
solution. In this paper, we introduce a grid-refinement procedure which should substantially
improve the efficiency of obtaining uniformly accurate numerical solutions.

In solving a differential equation that models a physical problem of interest, e.g.. the
Navier-Stokes equations in fluid mechanics, the solution is represented by values at points
distributed over the space on which the problem is defined. This distribution of grid points is
usually at one’s discretion and is generally related to the geometry and some charactenistic
features of the problem. It directly affects the accuracy of the solution. The optional
distribution of grid points for various problems has been attempted by many researchers. A
review by Thacker [1] surveyed the various methods currently used to generate grids that are
geometry related. These methods are concerned with the regularity and smoothness of the

0045-7825/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)
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distribution of the grid generated and the satisfaction of certain predetermined criteria that are
believed to be essential for accurate solutions. However, there is no guarantee that the
solution obtained with such grids will meet certain accuracy requirements, nor that the
number of grid points will be optimum for a given accuracy; such goals can only be realized by
grids that are, at least to some degree, solution dependent.

As pointed out in a recent paper by Benek, Steger and Dougherty (2], solution-dependent
grid-generation methods can be classified into three categories: grid patching, grid embedding,
and grid adapting. The applications of these methods are probiem oriented. Grid patching and
grid embedding are based on the idea of dividing the problem domain into subdomains which
are easier to handle or over which the solutions can be obtained more efficiently than over the
full problem. A typical example is the aircraft design and analysis problem (3, 4]. Grid-to-grid
communication is handled by interpolations, and care must be taken at intergrid boundaries to
ensure certain compatibility conditions are satisfied, e.g., conservation of fluxes [5]. Usually,
this type of grid generation is only problem dependent, designed according to the user’s view
of the problem, but can be made flexible enough to move around the problem domain, change
size and density, and retire if no longer needed [6]. These procedures require extensive
bookkeeping for both the grid system and the solution.

There are two grid-adapting strategies. One strategy is to redistribute a fixed number of grid
points according to some criteria such that the overall error measured by some means is
reduced (e.g., (7, 8]). The other is to increase the number of grid points near regions where a
measure of error indicates refinement is needed (e.g., (9, 10]). These methods are most
effective for problems with local singularities or layers of rapid changes, e.g., shock and
boundary layers. However, a successful application of these methods depends on the criteria
used for grid redistribution or addition, which may be very sensitive to the behavior of the
solution, and repeated computations are needed before a satisfactory resuit is achieved. In the
case of grid addition, redistribution of grid points may also be needed to avoid the error due
to abrupt changes of grid-point distribution. For multidimensional problems, the extra effort
needed to manage the complexities associated with adaptive gridding could upset the overall
effectiveness of these methods. Advanced computer science techniques like pattern recogni-
tion, artificial intelligence, and data base management will definitely play a significant role in
reducing the total cost of obtaining a numerical solution.

A natural question arises in refining numerical solutions: is it necessary to increase the
number of grid points or redistribute them in order to improve the accuracy of a numerical
solution? The answer is not as straightforward as one might think. Customarily, the error of a
numerical solution is related to the truncation error or the residual due to discretization.
When a measure of the truncation error is larger than a preset value in certain regions, the
addition of sufficient grid points in those regions reduces the truncation error and, hence,
improves the accuracy of the solution, a consistency requirement. However, it will be shown
in Section 2 that an improved solution is possible without changing the base grid structure by
using an approximation of the truncation error obtained from a local refinement. These two
approaches, while similar in nature, are different in methodology.

An adaptive refinement procedure for solving differential equations is introduced in Section
3. Applications of this procedure to typical problems in fluid mechanics are demonstrated in
Section 4.

-— -
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2. Truncation error and grid refinement

Most numerical analysis books state that a differential operation L operating on a function
¢ is related to a difference operator L, (with the subscript 4 denoting the grid size), operating
on ¢ by the truncation error (abbreviated TE hereafter), i.e.,

Lo=L,¢ +TE(p, 4). (1)

This result of a Taylor-series expansion is the basis for all finite difference techniques.
Ordinarily, the direct system,

L.e,=0, : (2)
is solved for ¢,, which satisfies, consequently, the equation
Le, =TE(e,, h). (3)

As a consistency requirement, the TE vanishes as the step size h approaches zero, leading to
the limiting solution ¢,

that satisfies the differential equation
Le=0. (4)

Hence, it is assumed that if the TE is uniformly small, solving the discrete system (2) will
iead to a good approximate solution ¢, of ¢. However, in many problems the TE is a rapidly
varying function of its arguments. The idea of conventional grid-adapting techniques is to look
for or modify the distribution of grid points according to some preset criteria which will render
uniformity of truncation error across the solution domain. Unfortunately, there is no simple
way to generate a grid that minimizes the truncation error for a given problem and. in many
cases, the process of finding the optimal grid is more complicated and time consuming than
computing the solution itself.

We must remember that it is (4) that one wants to solve, not (3), which is equivalent to
solving the discrete equation (2). The discrete equation that ought to be solved corresponding
to solving (4) is implied by (1), i.e.,

L,o, + TE(G, h)=0. (5)

Here, we have deliberately denoted the argument function ¢ of the TE with a tilde, which can
be different from the solution ¢,. Notice that if the exact solution were available, it would
satisfy (5) exactly, with ¢ = ¢, = ¢. This implies that the TE can be computed exactly by
applying the operator L, to the solution, e.g.,
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TE(e, ) =-L,e, (6)
and that solving the system

L.oy=-TE(p, h)=L,¢

will yield the exact solution at nodal points. Hence, it is clear that if the goal is to improve a
numerical solution, the basic grid structure need not be changed, only improved values of TE
at grid points need to be provided. To emphasize this point, the base grid in the examples
considered here is never changed. The strategy one would use in making tradeoffs between
the base grid and approximating the TE is not discussed in this paper.

Analytically, the TE consists of all higher derivatives of the function being expanded in a
Taylor series, if they exist. If more neighboring values of a function are known, higher
derivatives can be computed, and hence the TE can be better approximated. A TE sequence
may be defined as follows:

TE, v =TE(¢yn  A)=~L,0un, (7N

where the subscript /N refers to values based on a grid of size 4/.V (e.g.. subdividing the base
grid of size A, N times). For simplicity, we may assume ¢,, , satisfies the equation

Lunény=0. (8)

With these definitions and the substitution of (7) into (6) and setting ¢ = ¢,, ., it is easy to see
that ¢, = ¢,,5 is a solution of (5) at coinciding nodal points (or through the use of an
interpolation function).

All we have shown so far is that it is possible to obtain a refined numerical solution
satisfying (5) without changing the base grid, provided the TE is known to the same order of
accuracy as the solution. The inclusion of TE into the difference equation had been suggested
before [11~14]. Pereyra (11] proposed a deferred correction procedure to compute the TE
progressively. Warming and Hyett (12] and Klopfer and McRae [13] implemented it in forms
of a modified equation. For some simple linear differential equations, even analytical
expressions of the truncation error in terms of lower derivatives of the unknown function have
been used. However, the complexity involved in the derivation of such terms and, in some
cases, the numerical instabilities caused by the presence of certain terms has discouraged the
more popular use of such schemes. In the following sections we will introduce an adaptive
procedure s:milar to that suggested by Brandt [14] for solution refinements based on the ideas
discussed in this section and show that the injection of the TE is a simple but effective means
of improving the accuracy of a numerical solution.

3. A refinement procedure

Boundary and internal layers are common structures in nonlinear mechanics. Analytically,
such layers are commonly found through singular perturbations, whereby solutions in different
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regions are described by simplifed versions of the governing equation obtained using a scaling
pertinent to the local features. The grid refinement procedure used here is, in many ways,
analogous to the singular perturbation method. Clustering grid points over areas where rapid
changes occur is effectively scaling the local solutions. A discrete operator L, can be regarded
as a simplified operator of the full equation and is valid everywhere except in regions where
the omitted higher-order terms, TE(g, /#), become dominant.

The refinement procedure we have chosen uses the TE as an indicator and as a means for
improving the solution. To begin, a base grid of size h, not necessarily uniform, is chosen for
the base solution ¢,. The TE is initially assumed to be zero. Equation (5) is then solved for ¢,
to a preset accuracy &. Regarding ¢, as a refined solution for the grid 2k, which is formed by
omitting every other grid point of the base grid, the truncation error is then estimated using
the formula L., ¢, for every point of the grid A except for the boundary points and the ones
next to them. The regions where the estimated TE, —-L,, ¢,, is larger than a preset value ¢ (or
other appropriate criterion) are identified; for this, a pattern recognition algorithm like that
described in [6] will be very useful. Qutside the region where the truncation error is injected,
TE is set to zero. Buffer zones are then introduced with TE =0 but with the mesh refined to
achieve smooth transition of solutions. Information on the size of the region with TE
injections, solution boundary values, and parameters like the refinement factor N of these
regions are then transmitted to the finer grid solver, L,,.¢,,yv =0, to obtain a refined local
solution, ¢,,y. These local refined solutions are then used to form the approximated TE,
—L, @\ n, for the next cycle of refinement until

ILa@un — L0yl <e forall M>N.

ADAPTIVE GRID REFINEMENTS
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COMPUTE
TE: 'Lﬁ%/"

TE APPROXIMATION

Fig. 1. Procedure for adaptive grid refinement with truncation error injection.
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At this stage, further refinements will have no effect on the solution ¢, which then satisties ()
to the preset accuracy e. This procedure is shown schematically in Fig. 1.

Note that each refinement may have its own local solutions injecting their TE either to their
parent solutions or to the base solution, its own governing equations, and its own grid
distribution. No attempt is made here to optimize the strategy for grid nesting. In the case of
using a local stretched grid, interpolation is needed to obtain the TE. A major advantage of
truncation error injection is that, unlike other grid-refinement methods, there is no particular
need for storing the finer-grid solutions. Once the TE is obtained, the approximated values of
the TE indicate how good the local solution is and if needed refinements can be obtained with
minor effort.

4. Numerical examples

The first example chosen to demonstrate the adaptive procedure was the classical example
in boundary layer theory modeled by the one-dimensional convection-diffusion equation:

h :
®: = Qe Pu» With ¢(0)=0 and o(1)=1.

This example has been used by many authors to demonstrate special properties of their
methods.
In particular, we chose central differences for both the first and second derivatives. [t is well

@ nei/8
Ladn*0
—=- EXACT ¢

éh 1.00
-0.79

-2.38

REYNOLDS NUMBER s 100

CENTRAL DIFFERENCE SCHEME
SOLUTIONS OF hX/RE-0%/0X? - Ogp/OX #0
Fig. 2. Solution without TE injection.
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known that for a grid Reynolds number Re > 2, nonphysical spatial oscillations due to large
dispersive truncation error occur. Figure 2 shows the erratic solution for Re = 100 and step
size h = }. It bears no resemblance to the exact solution, which remains flat until near the
right boundary and shoots up exponentially to the boundary value ¢(1) = 1.
After a TE estimation (dashed line in Fig. 3(a)) which indicates that refinement is needed
' everywhere, the chosen subdomain (same as the base grid) is divided so it has a local step size
of }h. A refined soution ¢,,, is then obtained, solving (8). and the corresponding TE,,, is
. computed and injected into (5). The solution obtained and absolute error are depicted in Figs.
3(b), (c). The effects of the truncation error are evident by the disappearance of the
nonphysical oscillations in the recomputed solution ¢,. Progressive improvcments of the
solution after the second and thnrd cycle of refinement can be seen in ans 4 and 5. Because of
the preset tolerance (g = 107°), the refined region was the whole region for the above cases.
Figure 6 shows a converged solution accurate within 10~° in absolute error after the fourth
refinement cycle. From the estimated TE, the algorithm decided that it was sufficient to refine
the grid from x = 0.375 to x = 1. The total number of grid points used in the last case was 81.
only a few points more than the previous .efinement. It is interesting to note that in the
converged solution the error is uniformly distributed across the solution domain. Further
refinements showed no further improvement in the solution, indicating that the last local-
refinement was enough to satisfy the preset error criterion. Since this is a linear problem, a
directed computation using 217 uniformly distributed points, the same total number of pomts
used in this procedure, shows a total mean-squared errcr of 0.023; an improvement of 10~*
achieved using this refinement strategy with the same amount of computational rcsourccs
It is of interest to note that the choice of a scheme is immaterial to the effectiveness of this
solution refinement method. We have applied it to the same problem using an upwind scheme.

O w4 TE FROM Pas2 (1gpoTe

- = ESTIMATED TE

e APPROXIMATED TE Py -TE, s
TE 4 3,
0847 040y 007 /
o.28 oeot 2.7 ,
1
!
0.014 v ! 0.40 0.80 ¢
i
\
-0.23 4 ! . 0204 028 ¢
v/ v/
L 4 v 0.00 0.00
-0.52 e} Y ’ 3 S
000 023 QS0 073 100 000 029 080 075 1.00 000 028 050 078 .00
! X .X X
3a 3b 3¢
REFINE LOCALLY IF TE>.0001 CONVERGED IF CNANGES OF ¢ < 000! REYNOLDS NUMBER » 100
FROM POINT ! TO POINT 9 CENTRAL DIFFERENCE SCHEME
ESTIMATED TRUNCATION ERROR ERROA OF SOLUTIONS SOLUTIONS OF hX/RE-0%5/0Xt-Dd/0Xs0

Fig. 3. Solution with TE injection after first cycle.
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& WITH TE FROM 3, .4 (32PTS)

Ladn*-TE ) 4

100 ¢

0.78

Q.23

Q.00 .
000 023 080 073 100

4c

REYNOLOS NUMGER #100
CENTRAL DIFFERENCE SCHEME
SOLUTIONS OF h/RE- 924/0x2-0¢/0X 0

Fig. 4. Solution with TE injection after the second cycle.

The resuits are even more impressive. A solution accurate to 10 ~° is achieved with two levels
of local refinement and a total effort equivalent to that of using 29 points. However, the
examples using central differences are more illustrative.

The second example was the reflections of a two-dimensional oblique shock from a wall. We
solve the Euler’s equation using the MacCormack's scheme because of its simplicity and
popularity. Figure 7 shows a display of the exact pressure distribution for an incident shock, a

=== ESTIMATED TE
——— APPROXIMATED TE

TE
093y

0688 ¢

043

018 ¢

-Q.07
Q00 023 050 078 100
X

3a

REFINE LOCALLY IF TE >.000!
FROM POINT | TO PQINT 9
ESTIMATED TRUNCATION EPROR

008 ¢

006 ¢

Q04

002 ¢

Q.00
000 025 928¢ 075 100

) X
3t
CONVERGED IF CHANSZS OF ¢ <.0001

Z3ROR OF SOLUTIINS

+ WITH TE FROM &, /g (64PTS)

®n

100 ¢
078
030

Q.23

000
000 023 0S0 078 100

X
3¢
REYNOLDS NUMBER * 100

CENTRAL OIFFERENCE SCHEME
SOLUTIONS OF h/RE-024/DX2-0¢/0X2C

Fig. 5. Solution with TE injection after the third cycle.
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ESTIMATED TRUNCATION ERROR ERROR OF SOLUTIONS SOLUTIONS OF h/RE: 024/0X*-0g/0X=0
Fig. 6. Final converged solution after the fourth cycle.
SHOCK REFLECTION
EULER EQUATIONS
MACCORMACK' SCHEME
L *Ly4,*TEO
EXACT SOLUTION ¢
(@)
EXACT TRUNCATION ERROR  -L ¢
|
(b)
Fig. 7(a). Pressure contours of an oblique shock reflection. (b) Exact truncation error computed. TE values have
an increment value of 0.001, starting at a base value of 0.01.
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pressure discontinuity of 35° at free stream Mach number M, =2.013 over a 11 x 31 grid of
step size A = 0.05. Fifteen contour levels are plotted in increments of 0.5 beginning at 0.73.
The zigzags are a result of representing on a grid the abrupt pressure jump from one nodal
point to another, depending on whether the point is before or after the shock, by interpolated
contours for graphic display. For reference, the exact truncation error computed from the
exact solution (Fig. 7(a)) is shown in Fig. 7(b) in increments of 0.005 starting at 0.001. It is
clear from Fig. 7 that local refinements with rotated grids aligned with the shock would be
most effective. However, our intention in this example was to show that even for a nonlinear
operator, the exact solution can be recovered if the TE is given or computed locally. Figure 8
shows the approximated truncation error from a refined solution with a refinement factor of
four. A comparison of the pressure contours before and after TE injection shows marked
improvement. Except for the small wake behind the shocks, which is due to the numerical
scheme selected, the refined solution is very close to the exact one.

The third problem was chosen to study this procedure with rotated grids aligned with the
discontinuities. We solved the linear, two-dimensional convection-diffusion equation for a
nominal quantity 7, modeling two adjacent fluids of initially different temperatures moving at
the same speed. Upwind differencing was used for the convective terms. It is well known that
the artificial cross-wind diffusion due to upwind differencing is a major source of error. It
causes excessive spreading of the discontinuity. Figure 9 shows the temperature contours

TEhI4

TRUNCATION ERRQR, RF24

TRUNCATION ERROR CONTOURS COMPUTED
FROM A REFINED SOLUTION WITH A
REFINEMENT FACTOR OF 4.
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Fig. 9. Numerical solution of a temperature shear {ayer (grid 60 x 40), no TE injection.
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Fig. 10. Numerical solution of a temperature shear layer, grid 120 x 80, no TE injection.

solved on a 60 % 40 base grid of step size 7 =0.25. A slightly improved solution on an
unrotated 120 x 80 grid is shown in Fig. 10 for comparison. This does not compare well with
the exact solution depicted in Fig. 11. Given suitable pattern recognition schemes, it would be
natural to introduce a rotated grid parallei to the flow direction over a small region
surrounding the discontinuity with boundary conditions extracted from the solution in Fig. 9.
Here, we have done this manually with a 20 x 40 grid aligned with the flow. Due to grid
rotation, the cross-wind artificial diffusion is minimized, resulting in a sharp temperature
gradient very close to the exact solution. The isotherms that appear near the upper and lower
boundary of the refined local solution on the subgrid (Fig. 12) are an effect of the incorrect
boundary conditions extracted from the base grid solution; these can be avoided simply by
taking a larger subgrid. However, with the injected TE, the improved base solution provides a
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Fig. 11. Exact solution of a temperature shear layer on a grid of 60 x 40.




14 K.-Y. Fung et al., Adaptive refinement with truncation error injection

— Yo.css‘ ‘ j

T:Q.tss__—j‘
0.3pF 0.49%
:g‘: EOEM
L o ~7.300

+ 498

0,495 mm—

L L i " — . s 1 ( . 48§
9873 7.2 7.4 G 5.8 .0 T
X
Fig. 12. Locally refined solution on a rotated grid of 20 x 40.
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Fig. 13. Improved solution of a temperature shear layer with TE injection, grid 60 x 40.
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sharp gradient without such isotherms (Fig. 13), which shows that the base grid solution is
readjusted smoothly through the artificial boundaries.

The examples given here demonstrate various aspects of the TE injection method and
show, in particular, that very accurate solutions can be obtained on refatively coarse meshes.

5. Conclusions

It is well known that if the truncation error in a discrete approximation to a differential
equation were known exactly, the values of the exact solution at the discrete points could be
determined. This fact, along with adaptive mesh refinements to determine the truncation
error, is used to produce hlghly accurate solutions to model problems on relatively coarse
grids with substantial savings in computer time and use of computer memory. Improvements
in the local as well as global accuracy of a solution on a fixed grid are found by refining the
grid to estimate the truncation error and by injecting this truncation error back into the
solution of the discrete equation on the unrefined grid. This use of solution adaptive grid
systems reduces the dependence of the solution on the choice of the grid and, hence, the effort
of grid generation.

Acknowledgment

This research was carried out at the Computational Fluid Mechanics Laboratory of the
Aerospace and Mechanical Engineering Department under AFOSR Grant 83-0071, monitored
by Dr. James D. Wilson, and NASA CFD Traineeship Grant NGT 03-002-800. Permission
from Dr. Paul Kutler to use the NASA Ames CRAY-XMP computer for this and other studies
related to the traineeship program is gratefully acknowledged. The authors are aiso indebted
to Dr. C.M. Hung of the NASA Ames Research Center for his technical advice.

References

(1] W.C. Thacker, A brief review of techniques for generating irregular computational grids, Internat. J. Numer.
Meths. Engrg. 15 (1980) 1335-1341.

2] J.A. Benek, J.L. Steger and F.C. Dougherty, A flexible grid embedding technique with application to the
Euler equations, AIAA Paper 83-1944 (1983).

(3] R. Magnus and H. Yoshihara, Unsteady transonic flows over an airfoil, AIAA J. 13(2) (1975) 1622-1628.

(4] E.H. Atta and J. Vadyal, A grid interfacing zonal algorithm for three-dimensional transonic flows about
aircraft configurations, AIAA Paper 82-1017 (1982).

[5] M.M. Rai, A conservative treatment of zonal boundaries for Euler equation calculations, AIAA Paper
84-0164 (1984).

{6] M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput.
Phys. 53 (1984) 484-512.

[7] V. Pereyra and E.G. Sewell, Mesh selection for discrete solution of boundary probiems in ordinary differential
equations, Numer. Math. 23 (1975) 261-268.

(8] G. McNeice and P. Marcai, Optimization of finite element grids based on minimum potential energy, Trans.
ASME J. Energy Industry 95(1) (1973) 186~190.

[9) C.E. Pearson, On a differential equation of boundary layer type, J. Math. Phys. 47 (1968) 134-134.




16 K.-Y. Fung et al.. Adaptive refinement with truncation error injection

(10] 1. Babuska, The seif-adaptive approach in the finite element method, in: J.H. Whiteman. ed.. The
Mathematics of Finite Elements and Applications [I. MAFELAP 1975 (Academic Press, New York. 1976).

(11]) M. Lentini and V. Pereyra, A variable order finite difference method for nonlinear multipoint bounaary value
problems, Math. Comput. 28(128) (1974) 981-1003.

{12] R.F. Warming and B.J. Hyett, The modifed equation approach to the stability and accuracy analysis of
finite-difference methods. J. Comput. Phys. 14(2) (1974) 159~179.

{13] G.H. Klopfer and D.S. McRae. Nonlinear truacation error analysis of finite difference schrmes for the Euler
equations, AIAA J. 21(4) (1983) 487-494.

{14) A. Brandt, Multi-level adaptive solutions to boundary value problems. Math. Comput. 31(138) (1977)
333-390.




